
1

Controlling Hardware with Python
PyZurich Meetup 2015-10-29
Danilo Bargen (@dbrgn), Webrepublic AG

2

- Leading Digital Marketing agency in Switzerland
- Owner-managed and independent
- Established in 2009
- Based in Zurich and Lausanne
- Portfolio of 120+ national and international brands
- Full coverage of digital performance path
- Sparring partner for ambitious organizations
- Own software development team

Webrepublic

3

- Software Engineer
- Mostly interested in Python and Rust
- Bought a Raspberry Pi the day it became available
- Founded a Hackerspace in Rapperswil in 2013 (coredump.ch)
- NOT a hardware or electronics expert! =)

Twitter: @dbrgn
Blog: blog.dbrgn.ch

Me

4

Agenda

1. Linux, Python and Hardware

2. The Raspberry Pi 2 Hardware

3. Electronics Crashcourse

4. Example: Simple Circuit

5. Input

6. Example: Using the RPLCD Library

7. RPLCD Implementation Details

5

- I’ll try to keep the language as simple as possible.

- Target audience: Python developers (maybe of the webdev

flavor) that have no or little experience with hardware.

- Correct me if something is wrong, but...

- ...simplifications are being used on purpose. This isn’t a lecture.

ETA: 60–90 minutes

About this talk

6

1: Linux, Python and Hardware
A complicated relationship.

7

- Usually C/C++ or Assembly is being used to control hardware

- Realtime performance / exact timing is often important

- Deterministic runtimes: Knowing how long a CPU cycle takes

Controlling Hardware with Code

8

- A regular Linux kernel does not guarantee timing

- The Linux kernel can be configured to guarantee specific

response times

- The Raspbian kernel is not realtime

- (I won’t get into the details of what defines “realtime” =))

Why Linux?

9

- Python is a high-level garbage collected language

- Not terribly well suited for controlling hardware

- No timing guarantees due to GC pauses

Why Python?

10

- Turns out that timing is not always that important

- Python is easy to learn

- Python is easy to use

- Good to get started with hardware

Then why Linux + Python?

11

2: The Raspberry Pi Hardware
A great platform for n00b hardware hackers.

12

- 900 MHz ARM Cortex-A7 CPU

- 1 GiB RAM

- 4 USB Ports

- 40 GPIO Pins

- HDMI / Ethernet / Audio Jack / Composite Video / Camera

Interface / Display Interface / MicroSD

- Serial communication: UART / I²C / SPI

- Other stuff I haven’t covered here

The Raspberry Pi 2

13

- GPIO stands for General Purpose Input / Output

- Pins to communicate with external devices

- This is what they look like:

- Pin numbering:

UART, I²C, ARM, GPIO, WTF?

14

- Complicated abbreviations make everything sound hard

- Most stuff is actually easy

- Never think “this is too hard for me”!

- Here are some (simplified) translations:

- GPIO: “Wires sticking out of the hardware that can be set to 5V or

0V”

- UART: “Two wires for sending and receiving”

- Bus: “A cable with many devices on it”

- SPI: “Like UART with support for multiple devices and faster”

- Syscalls: The Linux kernel API

- Driver: “An API client that sends 1’s and 0’s through a wire”

- Kernel driver: “A driver that is a pain to debug”

- Interrupt: “A high-priority callback”

Public Service Announcement

15

Public Service Announcement

NEVER think
“this is too hard for me”!

15

16

- You can stick cables into these pins.

- Make sure you use the right pin.

- You’re responsible for the wiring! Avoid short circuits.

- Using a breadboard helps.

Back to the GPIO

17

- A breadboard helps you to connect wires.

- This is how it works:

What is a “breadboard”?

18

- A “short” is short for “short circuit”

- This means that you connect a voltage source (e.g. the 5V pin)

with the ground pin without having anything in between that

uses some of the current.

- The “something in between” could be a resistor or a LED

- Don’t do it!

https://www.youtube.com/watch?v=PqyUtQv1WoQ

What is a “short” or “shorting”?

https://www.youtube.com/watch?v=PqyUtQv1WoQ
https://www.youtube.com/watch?v=PqyUtQv1WoQ

19

- You need to configure the pins as either input- or output-pins

- They use 3.3V internally, so don’t feed them 5V!

- Maximum current draw per GPIO pin is 16 mA.

- Maximum current draw for all GPIO pins is 50 mA.

http://elinux.org/RPi_Low-level_peripherals

http://raspberrypi.stackexchange.com/a/9299/6793

Important facts about the GPIO pins

- What is a “mA”?

http://elinux.org/RPi_Low-level_peripherals
http://elinux.org/RPi_Low-level_peripherals
http://raspberrypi.stackexchange.com/a/9299/6793
http://raspberrypi.stackexchange.com/a/9299/6793

20

3: Electronics Crashcourse
The essentials you need to know.

21

The Water Analogy

22

- Movement of electrons through a conductor

- Electrons are negatively charged

- Electrons move from one side of a power source to the other

side.

- Measured in Amperes (A, Amps), symbol is I

- Analogue to the amount of water in a pipe

What is current?

23

- Electronic potential difference between two points

- Analogue to the pressure in a pipe

- Measured in Volts (V, Voltage), symbol is U

- An AA battery has 1.3–1.5 V

- The Swiss electricity grid uses ~230V

What is voltage?

24

- Something that hinders the flow of electricity

- Measured in Ohms (Ω), symbol is R

- A resistor or an LED has some resistance

- An open switch has infinite resistance

What is resistance (R)?

25

- The most important formula you need to know.

- R is resistance, U is voltage, I is current

- Example: If you increase the resistance but still want the same

current flow, then you need to increase the voltage. If voltage

stays the same, the current decreases.

Ohm’s Law

26

- For electricity to flow, a circuit always needs to be closed.

- For a simple circuit, that’s easy.

- For multiple connected circuits, that’s also easy!

You just need Kirchhoff's circuit laws. Google them!

Circuits

27

Some electrical components

Resistors Capacitors LEDs

Diodes Transistors MOSFETs

28

Resistors

- Provide resistance

- Measured in Ohms (Ω)

- Color coded

29

Capacitors

- Think of them as a small battery that can be charged and

discharged very quickly

- Measured in Farad (F)

30

LEDs

- Need no introduction

- Only allow current to flow in one direction!

- Legs are called “anode” (+, long leg) and “cathode” (-, short leg)

31

Diodes

- Allow current to flow only in one direction

- Like a valve

- A LED is a special version of a diode

32

Transistors

- Kind of important for computers :)

- Think of them like an electrical switch

- If you feed enough current to the base B, the current flows

freely from the collector C to the emitter E (for a N-channel BJT

transistor). There are also other variants.

- Can also be used as amplifiers.

33

MOSFETs

- A special type of transistor (metal–oxide–semiconductor field-

effect transistor).

- Needs voltage instead of current at the base (called “gate”)

- Can be used to switch high-power devices with low-power

microcontrollers

34

More components

http://shop.oreilly.com/product/0636920026105.do

http://shop.oreilly.com/product/0636920026105.do
http://shop.oreilly.com/product/0636920026105.do

35

4: Example: Simple Circuit
Hello world!

36

- The “Hello World” of electronics and microcontrollers.

Let’s blink an LED

37

- Add a resistor to avoid frying your GPIO pins

- Circuit goes from a GPIO pin to GND (0V)

Connect to GPIO pins

38

By setting the GPIO pin to HIGH (3.3 V) we can turn the LED on.

import RPi.GPIO as GPIO

led = 18

GPIO.setup(led, GPIO.OUT)

GPIO.output(led, 1)

Controlling the GPIO pins

39

You can use a regular loop to toggle the LED every second.

import RPi.GPIO as GPIO

import time

led = 18

GPIO.setup(led, GPIO.OUT)

state = 1

while True:

 GPIO.output(led, state)

 state ^= 1

 time.sleep(1)

Blinking the LED

40

If you want to be a good citizen™, clean up after every program to

make pins available again to other scripts.

try:

 main_loop()

except Exception:

 GPIO.cleanup()

Don’t forget to clean up

41

5: Input
Let’s look at reading input values, debuncing and
interrupts.

42

Let’s read the state of a button and turn on the LED accordingly.

Reading Input

43

You should learn to read schematic diagrams! =)

The Schematic

44

We can set a GPIO pin to INPUT mode.

If we don’t push the button, the GPIO pin “floats”. It is neither always

HIGH nor always LOW, it has an undefined state that may be

affected by static electricity.

We can enable internal pull-up resistors to make the pin HIGH by

default.

button = 8

GPIO.setup(button, GPIO.IN, GPIO.PUD_UP)

Reading Input

45

Now that the GPIO pin is configured, we can read the current input

value.

value = GPIO.input(button)

if value:

 print(“GPIO pin is HIGH”)

else:

 print(“GPIO pin is LOW”)

Reading Input

46

Remember that the pin is high by default. The button pulls it to

LOW.

button_pressed = not GPIO.input(button)

if button_pressed:

 print(“Button pressed”)

else:

 print(“Button not pressed”)

Reading Button State

47

We can now turn on the LED depending on the button state.

button_pressed = not GPIO.input(button)

GPIO.output(led, button_pressed)

Turning on the LED

48

We could also poll the button to trigger events.

was_pressed = 0

while True:

 button_pressed = not GPIO.input(button)

 if button_pressed and not was_pressed:

 toggle_led()

 was_pressed = button_pressed

Triggering events

49

- If you use a busy-loop like in our example, our CPU load will be

very high.

- If you’re a webdev you know that polling sucks.

- Instead, you want to wait for an event or register a callback.

- Turns out, we can! In hardware-land, events are called

interrupts.

Polling?

50

The wait_for_edge method blocks until an event occurs.

while True:

 GPIO.wait_for_edge(button, GPIO.FALLING)

 toggle_led()

Waiting for events

51

We can also use threaded callbacks (aka “interrupt handlers” or

“interrupt service routines”):

def callback(channel):

 print(‘Button pushed on GPIO %s!” % channel)

 toggle_led()

GPIO.add_event_detect(button, GPIO.FALLING,

 callback=callback)

Y U NO CALLBACK?

52

- If you actually implement this code, you will notice that the LED

toggling is buggy.

- Sometimes it turns on properly, sometimes it flickers, or it stays

off.

- The reason is physical switch bouncing:

Bugs, bugs everywhere!

53

Simple software debouncing is pretty straightforward:

was_pressed = 0

while True:

 button_pressed = not GPIO.input(button)

 if button_pressed and not was_pressed:

 time.sleep(0.2)

 still_pressed = not GPIO.input(button)

 if still_pressed:

 toggle_led()

 was_pressed = button_pressed

Software debouncing

54

We can also get this for free though:

def callback(channel):

 print(‘Button pushed on GPIO %s!” % channel)

 toggle_led()

GPIO.add_event_detect(button, GPIO.FALLING,

 callback=callback,

 bouncetime=200)

We like free stuff

55

Now go and code some more useful stuff with this:

twitter_pin = 2; cat_pin = 3

def callback(channel):

 if channel == twitter_pin:

 tweet(‘The button was pressed!’)

 elif channel == cat_pin:

 food_dispenser.dispense(1)

pins = [twitter_pin, cat_pin]

GPIO.add_event_detect(pins, GPIO.FALLING,

 callback=callback, bouncetime=200)

Get creative!

56

6: Example: Using RPLCD

A library for writing to HD44780 character LCDs.

57

- A char LCD is a simple display that can display pixel characters.

- Usually 8x5 pixel characters.

What is a character LCD?

58

- A char LCD controlling chip by Hitachi

- The most widely used character LCD controller

- Many compatible controllers not by Hitachi

What is “HD44780”?

59

- A Python library I wrote in 2013 to control HD44780 displays.

- Idiomatic Python 2 / 3

- Properties instead of getters / setters

- Simple test suite (with human interaction)

- Caching: Only write characters if they changed

- Support for custom characters

- No external dependencies

- MIT licensed

https://github.com/dbrgn/RPLCD

https://pypi.python.org/pypi/RPLCD/

What is RPLCD?

https://github.com/dbrgn/RPLCD
https://github.com/dbrgn/RPLCD
https://pypi.python.org/pypi/RPLCD/
https://pypi.python.org/pypi/RPLCD/

60

- Wiring is configurable

- LCD can run both in 4 bit and in 8 bit mode

- Here’s the default wiring for 4 bit mode:

See also: https://learn.adafruit.com/character-lcds/wiring-a-character-lcd

Wiring

https://learn.adafruit.com/character-lcds/wiring-a-character-lcd

61

$ sudo pip install RPLCD

$ sudo python3

>>> from RPLCD import CharLCD

>>> lcd = CharLCD()

>>> lcd.write_string('Raspberry Pi HD44780')

>>> lcd.cursor_pos = (2, 0)

>>> lcd.write_string(

... 'http://github.com/\n\rdbrgn/RPLCD')

Usage example

http://github.com/%5Cn%5Crdbrgn/RPLCD

62

from datetime import date

import time

from RPLCD import CharLCD, cleared

lcd = CharLCD()

while True:

 with cleared(lcd):

 today = date.today().isoformat()

 lcd.write(today)

 time.sleep(1)

Context managers

63

from RPLCD import CharLCD, Alignment, CursorMode

lcd = CharLCD()

lcd.display_enabled = True

lcd.cursor_pos = (0, len(“Python”))

lcd.cursor_mode = CursorMode.blink

lcd.text_align_mode = Alignment.right

lcd.write(“nohtyP”)

Properties

64

- You can build additional functionality on top of the library.

- For example scrolling text: https://blog.dbrgn.

ch/2014/4/20/scrolling-text-with-rplcd/

- See https://youtu.be/49RkQeiVTGU

- Communication over I²C (uses less wires than the parallel wiring

we used) will probably be added in the future.

Other stuff

https://blog.dbrgn.ch/2014/4/20/scrolling-text-with-rplcd/
https://blog.dbrgn.ch/2014/4/20/scrolling-text-with-rplcd/
https://blog.dbrgn.ch/2014/4/20/scrolling-text-with-rplcd/
https://youtu.be/49RkQeiVTGU

65

7: RPLCD Implementation Details

This looks complicated, but is it?

66

- The implementation is actually quite easy. I needed to learn

reading datasheets though.

- The low level part works like this:

a. Output either 0 (instruction) or 1 (data) to the RS pin to specify

whether you’re gonna send a command or data.

b. If in 8 bit mode, output the 8 bits of the character or the command

to GPIO pins D0-D7.

c. Else, if in 4 bit mode, output the lower part of the character or the

command to GPIO pins D0-D3.

d. Toggle the “enable” pin for at least 37 µs (according to datasheet)

e. If in 4 bit mode, GOTO c and output the upper part of the byte.

- Rest is implementing all commands as high level functions.

The guts

67

68

69

70

How to implement lcd.clear()?

71

How to implement lcd.clear()?

72

How to implement lcd.clear()?

73

It’s possible!
Thank you.

Slides will be available here:

https://speakerdeck.com/dbrgn

https://speakerdeck.com/dbrgn
https://speakerdeck.com/dbrgn

